Friday, 10 February 2012

Quick3 Sort


Discussion

The 3-way partition variation of quick sort has slightly higher overhead compared to the standard 2-way partition version. Both have the same best, typical, and worst case time bounds, but this version is highly adaptive in the very common case of sorting with few unique keys.
When stability is not required, 3-way partition quick sort is the general purpose sorting algorithm of choice.
The 3-way partitioning code shown above is written for clarity rather than optimal performance; it exhibits poor locality, and performs more swaps than necessary. A more efficient but more elaborate 3-way partitioning method is given in Quicksort is Optimal by Robert Sedgewick and Jon Bentley.

Algorithm

# choose pivot
swap a[n,rand(1,n)]

# 3-way partition
i = 1, k = 1, p = n
while i < p,
  if a[i] < a[n], swap a[i++,k++]
  else if a[i] == a[n], swap a[i,--p]
  else i++
end
→ invariant: a[p..n] all equal
→ invariant: a[1..k-1] < a[p..n] < a[k..p-1]

# move pivots to center
m = min(p-k,n-p+1)
swap a[k..k+m-1,n-m+1..n]

# recursive sorts
sort a[1..k-1]
sort a[n-p+k+1,n]

Properties

  • Not stable
  • O(lg(n)) extra space
  • O(n2) time, but typically O(n·lg(n)) time
  • Adaptive: O(n) time when O(1) unique keys

References

Programming Pearls by Jon Bentley. Addison Wesley, 1986.
Quicksort is Optimal by Robert Sedgewick and Jon Bentley, Knuthfest, Stanford University, January, 2002.
Bubble-sort with Hungarian ("Csángó") folk dance YouTube video, created at Sapientia University, Tirgu Mures (Marosvásárhely), Romania.
Select-sort with Gypsy folk dance YouTube video, created at Sapientia University, Tirgu Mures (Marosvásárhely), Romania.
The Beauty of Sorting YouTube video, Dynamic Graphics Project, Computer Systems Research Group, University of Toronto.

No comments:

Post a Comment